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ABSTRACT 

Meyer-Rochow, V. B. & Gokan, N. (1988). Tlie eye of the tenebrionid Lepispilus sulcicollis (Coleoptera) 

and some ecophysiological predictions based on eye anatomy. New Zealand Natural Sciences 15: 79 - 89. 

Ommatidial organisation in the tenebrionid beetle Lepispilus sulcicollis is described allowing conclusions to 

be drawn as to how the compound eye serves this beetle. The ecophysiological predictions are considered 

completely unbiased as the precise location and circumstance of capture of the specimens were not 

recorded. The eye is of the 'acone' type, has a 50-55 um thick cornea with well developed corneal cones and 

150 um long ommatidia that are inclined to one another by an angle of ca. 4-5 . Each ommatidium 

possesses a 55 pm long and ca. 6 um wide rhabdom that consists of an outer closed ring of 6 rhabdomeres 

and a central rhabdom component made up of microvilli of cells 7 and 8. The microvilli of the inner 

rhabdom component are aligned at right angles to those of retinula cells 3 and 6. This suggests that e-vector 

determination is possible and that the beetle is likely to have a need for the detection of the plane of 

polarised light. The rhabdom is more voluminous than that of comparable strictly diurnal species, but it 

does not reach the dimensions of totally nocturnal insects. The abundance of screening pigment grains, 

microtubules, and the shape-change of the cone cells accompanying dark/light adaptation all suggest that L. 

sulcicollis may well live in cryptic, dark habitats, but that it is well adapted to cope with a sudden exposure to 

sunlight. In terms of gross structural arrangement of the eye, there can be no doubt that L. sulcicollis 

conforms to the Cucujiformia type. 
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INTRODUCTION 

Photoreception in beetles has been the 
theme of numerous publications in the last two 
decades. While the majority of them - too many 
to list - simply provide descriptions of gross 
morphological organisation and ultrastructure of 
the eyes of individual species, others deal with 
physiological (Bennet 1967, Meyer-Rochow 
1974, Meyer-Rochow & Horridge 1975, Hor
ridge et al. 1979), optical (Seitz 1969, Meyer-
Rochow 1973, Meyer-Rochow & Horridge 1975, 
Caveney & McIntyre 1981), or behavioural as
pects (Frantsevich et al. 1971 a, b, Meyer-
Rochow & Horridge 1975, Frantsevich et al. 

1977). In only a few papers so far has the em
phasis been on the relationship between activity, 
phylogeny, and eye anatomy, but there is now 
sufficient background information, at least in 
some taxa, to make this task a meaningful oper
ation, e.g. Scarabaeidae (Horridge & Giddings 
1971, Meyer-Rochow 1978, Caveney 1986, 
Gokan et al. 1988a) and Cucujoidea (Wachmann 
1977,1979, Gokan & Hosobuchi 1979, Schmitt et 
al. 1982). 

The family Tenebrionidae is one of the 
largest of the Coleoptera generally, and of the 
Cucujiformes in particular. Though relatively 
few studies have been concerned with eyes and 
vision of tenebrionid beetles (Wada & Schneider 
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1968, Gotz & Gambke 1968, Yinon & Auerbach 
1970, Varju 1987, Meyer-Rochow & Gokan 
1988), the family is of interest because of the 
very large number of xerophilic species, and the 
smaller number of economically important at
tackers of stored food products. 

If it should, indeed, be possible to correctly 
predict aspects of life style and general biology 
from an investigation of eye morphology and ul
trastructure, this could considerably facilitate our 
ecological understanding of species which cannot 
be observed easily or collected on a regular basis 
and have remained poorly understood because 
they occur in remote countries or inaccessible 
places. 

MATERIALS AND METHODS 

Beetles, later identified by Dr E. B. Britton 
(C.S.I.R.O., Division of Entomology, Black 
Mountain, Canberra, Australia), were collected 
by students for comparative studies of beetle 
eyes near Eden, New South Wales (Australia) in 
December. The fact that the circumstances of 
capture were not recorded allows us to make an 
unbiased prediction on this species' eye function 
based on anatomy and ultrastructure alone. As a 
matter of fact, virtually no information whatso
ever is available on this species' general ecology, 
and any hint that could come from a study of eye 
structure is of considerable value (see the discus
sion in this paper). 

Dark- as well as light-adapted insects were 
routinely decapitated, and the isolated eyes were 
prefixed in a mixture of 7.5 ml Karnovsky's 
(1965) fixative, 5 ml Cacodylate buffer adjusted 
to a pH-6.8 and 12.5 ml aqua dest. for 4 days. 
The specimens were then washed in half strength 
buffer and postfrxed for 30 min in equal parts of 
buffer and 2% OsCK. Sections in araldite were 
double stained with uranyl acetate and lead cit
rate. The electron microscopes used in this ex
amination were a Jeol 100CX and an Akashi 
LEM2000. 

RESULTS 

DIOPTRIC SYSTEM 

The dioptric system of the eye of Lepispilus 
sulcicollis consists of a 50-55 um thick multi-lay

ered, transparent cornea and an ca. 18 um long 
and 16 um wide cone of the 'acone type' 
(Grenacher 1879) made up to equal parts by 4 
cone cells. Together cornea and cone layer oc
cupy ca. 45% of the length of one ommatidium, 
which is about 150 um (Fig. 1). 

Figure 1. Semischematic drawing of the ommatidial organi

sation in a light-adapted longitudinally sectioned eye. 

Abbreviations used: C = cornea; CC = corneal cone; CrC 

= crystalline cone cells; P = primary (or principal) screen

ing pigment cells; S = secondary screening pigment cells; R 

= rhabdom; N = nucleus; A = axons; BM = basement 

membrane. 

Externally, the radius of curvature of the 
cornea is 50 um; the inner surface is more 
strongly curved and has a radius of curvature of 
around 14 um (Fig. 2). Directly under the 
corneal cone in the distal one third of the cone 
the rather electron translucent nuclei of the 4 
cone cells are to be found (Figs. 5 & 6). The 
cone cells are densely crowded with longitudi
nally oriented microtubules of 20 nm diameter 
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Figure 2. Electron micrograph of the distal end of a partially dark-adapted ommatidium, showing inward projecting corneal cone 
(CC), hourglass-shaped crystalline cone cells (CrC), the two principal (P) and numerous secondary screening pigment cells (S) as 
well as the rhabdom (R). The scale is 4 pm. 

Figure 3. Electron micrograph of longitudinal section through the rhabdom (R) and retinula cells (ret). Distally the crystalline cone 
cells (CrC) are visible, while all along the edge ofthe rhabdom, cisternae of a loosely organized endoplasmic reticulum are conspicuous. 
Isolation between neighbouring ommatidia is provided by secondary pigment cells (S). The scale is 2 pm. 

Figure 4. Proximally, retinula cell processes turn into axons (A) containing neurotubules and pigment grains to a level well below 
the basement membrane (marked by arrows). The scale is 2 pm. 
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Figure 5. Crystalline cone cell nuclei (N) are located distally just below the corneal cone (CC). The scale is 2 um. 

Figure 6. Slightly lower down ( = further into the eye) the four crystalline cone cells are surrounded by primary and secondary 
screening pigment cells. The scale is 2 um. 

Figure 7. Pigment grains of the principal (or primary) screening pigment cells are somewhat larger than those ofthe secondary screening 
pigment cells. The nuclei ofthe primary screening pigment cells (P) occupy the narrow waist-region ofthe cone cells (see diagram 
of Fig. 1). The scale is 2 um. 

Figure 8. Rhabdoms (R) are of the 'open' type, and consist of an outer ring of 6 rhabdomeres and an inner rhabdom that is made 
up of 2 interlacing retinula cells with microvilli running in the same direction. The scale is 3 jim. 
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(Figs. 2 & 6). In the light-adapted condition the 
cones taper proximally to a 1.5-2 um narrow light 
funnel. In a partially dark-adapted eye the com
bined formation of the 4 cone cells takes on 
hourglass shape with the narrowest neck-portion 
being tightly enveloped by the somata of the two 
primary screening pigment cells (Fig. 2). The 
latter contain dark, strongly electron opaque, 
spherical granules of 0.65 jim in diameter. The 
primary pigment cells which also contain micro
tubules, are surrounded by an undetermined but 
relatively large number (ca. 10-16) of secondary 
screening pigment cells (Figs. 6, 7 & 8). The 
pigment grains of the latter possess slightly 
smaller diameters than those of the primary 
screening pigment cells (0.55 um, n = 10 versus 
0.65/im,/i = 10). 

RETINULA CELLS AND RHABDOM 

The rhabdom commences just below the cry
stalline cone (Fig. 3), and in cross section re
sembles the Greek letter 'theta'. The outer ring 
of rhabdomeres is made up by retinula cells 
numbers 1-6 (Figs. 10, l l & 12), though on one 
occasion seven cells were counted (Fig. 9). The 
diameter of the rhabdom in cross section, mea
sured across the outer edge of the ring-forming 
rhabdomeres, is ca. 6 um over its entire distal-
proximal extension of about 55 /im (Fig. 3). In
dividual microvilli of the outer rhabdomeres 
measure ca. 1.8 /im in length and 0.080 um in di
ameter. The microvilli of the bar- or wall-like 
inner two rhabdomeres are always aligned in 
parallel with each other, but perpendicular to 
those of retinula cells numbers 3 and 6 (Figs. 10, 
l l & 12). They measure 1.3 /im in length and 
0.076 /im in diameter. 

More proximally, retinula cells numbers 1, 2, 
4 and 5 lose their rhabdomeres and become pe
ripherally 'squeezed out' of the cluster of 
rhabdom-forming retinula cells. Of the original 
ring of outer photoreceptor cells only retinula 
cells numbers 3 and 6 remain in contact with the 
rhabdom until ca. 25 /im above the basement 
membrane, when they too lose their rhab
domeres. From then on only the bar- or wall
like central rhabdom made up of the rhab
domeres of retinula cells numbers 7 and 8 re
mains (Fig. 12). 

Neighbouring retinula cells are held together 

by desmosomes that are developed between ad
jacent membranes ca. 1 /im out from the edge of 
the rhabdom (Figs. 9 & 10). All the peripheral 
as well as the central retinula cells contain a va
riety of organelles in their cytoplasms. These 
include spherical electron-opaque screening 
pigment granules with a mean diameter of 0.7 
um, mitochondria, endoplasmic reticulum, vac
uoles, and microtubules (the latter prominent as 
neurotubules in the bundle of retinula cell axons 
penetrating the basement membrane (Fig. 4)). 
Retinula cell nuclei, which are about twice as 
voluminous as those of the secondary or sup
porting cells, do not occur at a particular and 
clearly defined level in the eye, but are instead 
distributed over a ca. 20 /im longitudinal range 
within the proximal half of the ommatidium (Fig. 
12). A tapetum of tracheoles above or below the 
basement membrane is not developed, and evi
dence for a redistribution of axon pathways as in 
the neural superposition eye of the fly with its 
lamina cartridges (Braitenberg 1967), or the 
formation of pseudo-cartridges with axons from 
several different ommatidia as in the rock lobster 
eye (Meyer-Rochow 1975) is not apparent in the 
eye of L. sulcicollis. A glial encapsulation ap
pears to prevent contact between neighbouring 
axon bundles (Fig. 13). 

DISCUSSION 

Wachmann (1977), based on his very thor
ough study of the rhabdom ultrastructure of 
more than 70 species of beetles from about 20 
families, has convincingly advocated that the 
open rhabdomic organisation is a synapomor-
phous feature of the Cucujiformia, and that this 
taxon is monophyletic. Wachmann (1979) further 
concluded that the most archaic and perhaps 
original cucujiform rhabdom type still occurs in 
most chrysomelids and curculionids, in many ce
rambycids and in some Cleroidea and Cucu
joidea, and conforms to his 'Grundmuster 1' in 
which the more or less closed outer ring of 6 
rhabdomeres is nowhere in direct contact with 
the microvilli of the two central retinula cells 
over their entire length. In his 'Grundmuster 2', 
which would be applicable to L. sulcicollis, the 
peripheral rhabdom may communicate with the 
central rhabdomeres via the rhabdomeres of the 
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Figure 9. An ommatidium with an additional retinula cell: instead of 6 outer retinula cells there are seven here, but the shape of 
the rhabdom is the same as in other ommatidia. Desmosomes, identifiable as localised electron opaque membrane thickenings (arrows), 
hold adjacent retinula cells together. Secondary screening pigment cells (S) provide a physical and optical buffer between neighbouring 
ommatidial groups of retinula cells. The scale is 1 um. 
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Figure 10. Microvilli are basically aligned in 2 orthogonal directions and the central two retinula cells contain numerous microtubules 
The scale is 1 um. 

Figure l l . Further proximally, rhabdomeres 1, 2, 4 and 5 disappear so that only a dumbbell shaped rhabdom with microvilli of 
cells 3 and 6, and 7 and 8 in two orthogonal directions remains. At this level all retinula cells are crowded with screening pigment 
granules and mitochondria. The scale is 2 um. 

Figure 12. Even more proximally, retinula cells 1, 2, 4 and 5 begin to occupy peripheral positions with their nuclei (N) visible. 
The scale is 2 pm. 

Figure 13. Bundles of 8 axons, penetrating the basement membrane and containing dense aggregations of neurotubules as well as 
some pigment grains, represent the proximal projections of the retinula cells. The scale is 2 um. 
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two outer retinula cells numbers 1 and 4 in 
Wachmann (1979) and numbers 3 and 6 in this 
paper. Wachmann (1979) believes that Grund-
muster 2 could have arisen several times inde
pendently in different groups because of certain 
functional advantages of that type: the lateral an
choring of the central rhabdomeres increases 
stabilisation and reduces the risk of longitudinal 
rhabdom twist. Grundmuster 2, according to 
Wachmann (1979) has the added advantages of 
being able to evolve into a completely fused 
rhabdom, of being able to modify microvillar di
rections in response to ecophysio gical selective 
pressures, and of being able to develop a system 
of lateral polarization filters for e-vector deter
mination. 

Although at first glance it is hard to see what 
possible advantage an apposition eye with an 
open rhabdom could have had over one with a 
fused type in terms of visual sensitivity, it is self-
evident that to maintain massive amounts of 
photoreceptive membrane within the frame of a 
fused rhabdom, even under conditions of abun
dant light, would be an energetically costly lux
ury, which selective pressure would work against. 
Open rhabdoms, irrespective of whether they 
employ neural superposition (Diptera: 
Braitenberg 1967) or not (Ioannides & Horridge 
1975, Wachmann 1977, Meyer-Rochow & 
Juberthie-Jupeau 1983) are therefore advan
tageous for either diurnally active insects or 
species for which visual sensitivity is not the most 
important sensory modality. This does not rule 
out the possibility that certain insects, originally 
possessing an open rhabdom, secondarily 
became crepuscular, nocturnal, or even 
cavernicolous (Meyer-Rochow & Waldvogel 
1979) in habit, with consequences in terms of 
anatomical and optical modifications to the eyes 
and photoreceptive cell make-up. 

Amongst the cucujiform beetles the basic 
eye scheme of an acone apposition eye with an 
open rhabdom had to serve species that widely 
radiated within the available ecological spectrum 
and produced terrestrial as well as aquatic, diur
nal as well as nocturnal, and phytophagous as 
well as carnivorous forms. The eye structure of 
L. sulcicollis agrees with that of the cucujiform 
Grundmuster 2 suggesting a diurnally active an
cestor. Yet at the same time, the irregularitic 

terms of retinula cell numbers per ommatidium 
found in it (for summary of possible abnormali
ties see Meyer-Rochow 1972) prove that it can
not be a high performance photoreceptor, for 
that requires a high degree of structural order 
(Snyder et al 1977, Rossel 1979). In many ways 
the eye of L. sulcicollis bears a resemblance to 
the eyes of several species of cerambycids, many 
of which are nocturnal. As a matter of fact the 
Lepispilus eye displays anatomical features which 
are indicative of both diurnal and nocturnal ac
tivities. Since it is notoriously difficult to con
clude which evolutionary direction a photore
ceptor organ takes (Meyer-Rochow 1978) it 
seems more appropriate to simply list and dis
cuss the features that are seen as adaptations to 
a dimly or brightly lit environment. 

The acone nature of the eye, the lack of both 
a tapetum and a clear-zone between dioptric 
structures and retina, and the open type rhab
dom are all indications that this eye is, at least 
originally, in terms of its light-gathering capacity 
inferior to that of many nocturnal scarabaeid 
beetles (Meyer-Rochow & Horridge 1975, 
Gokan et al 1988b). The rather thick cornea 
could indicate a mechanical protective function, 
because of poor visual resolution of the eye 
(Meyer-Rochow 1973) or an optical protection 
against strong radiation (Gokan & Meyer-
Rochow 1984). The well-developed corneal cone 
is reminiscent of that in Anoplognathus pallidi
collis (Meyer-Rochow & Horridge 1975) and 
could thus be interpreted as an adaptation to 
improve photon capture. The constant width of 
the rhabdom over at least 75% of its total length, 
however, is more in line with a diurnal species, 
especially when we compare it with the 
rhabdoms of diurnal and nocturnal cerambycid 
species, e.g. Cerambyx Scopolii and C. cerdo 
(Wachmann 1979). The width of the rhabdom 
ring and the cross sectional diameter of the 
rhabdom are considerably larger than corre
sponding values for dipteran flies (Wada 1974, 
Eguchi & Ookoshi 1.981) or the diurnal beetle 
Curis caloptera (Gokan & Meyer-Rochow 1984). 
On the other hand, the rhabdom is very much 
less voluminous than that of the nocturnal beach 
sand tenebrionid Chaerodes trachyscelides, a 
species of 7 mm body length, whose rhabdoms 
measure 20-25 um in diameter (Meyer-Rochow 
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& Gokan 1988). 
The abundant screening pigment found in all 

retinula cells, including the central two 7 and 8, 
right down into the axons, signifies the need for 
protection from damaging or strong radiation. 
The regular, parallel alignment of the rhabdom 
microvilli which results in preferential responses 
to the e-vector of light (Waterman 1981), shows 
that the eye can afford to sacrifice some sensitiv
ity, possibly in exchange for some improvement 
in polarisation sensitivity. The strictly parallel 
orientation of the microvilli of retinula cells 7 
and 8, which are, sandwiched on their short sides 
by the perpendicularly aligned microvilli of cells 
3 and 6, points in the same direction, and sug
gests that there is some need for the detection of 
the plane of polarised light, which could only be 
during the day. 

Perhaps the strongest arguments that the 
apposition eye oi Lepispilus sulcicollis can adapt 
to a range of light intensities come from the 
configuration of the light- and partially dark-
adapted cones in longitudinal section. An hour
glass shaped cone cell tract in the partially dark-
adapted eye has been reported from the apposi
tion eye of the nocturnal ant Camponotus irritans 
(Menzi 1987), the staphylinid carcase beetle 
Creophilus erythrocephalus (Meyer-Rochow 
1972), the bark beetle Xyleborus ferrugineus, 
(Chu et al 1975) the tenebrionid flour beetle 
Tenebrio molitor (Wada & Schneider 1968) and 
the nocturnal beach sand beetle Chaerodes tra
chyscelides (Meyer-Rochow & Gokan 1988). 
All of these species inhabit rather dark environ
ments, but have a photoreceptor that primarily 
serves insects which are active under brighter 
conditions. The cellular machinery for the 
retinomotoric responses appears to reside with 
the microtubules, which are particularly abun
dant-in cells and cell regions which are subject to 
change and deformation. Clearly, in comparison 
to the tenebrionids Tenebrio molitor and 
Chaerodes trachyscelides which have voluminous 
rhabdoms, L. sulcicollis is least suitably adapted 
to a dimly lit environment. 

Although we would certainly not expect L. 
sulcicollis to be as diurnal as the bumblebee, for 
example, which has a flicker fusion frequency 
(FFF) of ca. 130 Hz, (Meyer-Rochow 1981) we 
can safely assume that L. sulcicollis is less noc

turnal or cryptic than Tenebrio molitor, and, 
therefore should have a flicker fusion frequency 
that is greater than that of Tenebrio (41 Hz, 
Campan 1970 which is similar to that of the 
house cricket Acheta domestica, whose FFF is 
also 41 Hz, Campan 1970) and probably lies in 
the vicinity of 80 Hz (the FFF of the crepuscular 
Amphimallon solsticialis for example, is 83 Hz, 
Campan 1970). The resolving power of the 
Tenebrio eye has been determined as 6.5° and 7° 
by experimental and anatomical measurements 
respectively (Gotz & Gambke 1968). Since the 
eye of L. sulcicollis has interommatidial angles of 
around 4-5° it should, on that basis alone, be ca
pable of resolving finer detail than Tenebrio, but 
structural irregularities would disallow the theo
retical limits of acuity to be reached. 

Several insects of grain and stored products, 
including the tenebrionid Tenebrio molitor, have 
been shown to possess one large sensitivity peak 
in the green part of the visual spectrum at 
around 520-530 nm wavelength, a minimum al 
about 400 nm, and rising sensitivity towards the 
shorter (= ultraviolet) end of the visual spectrum 
at 350 nm (Yinon & Auerbach 1970). Only in 
the strictly nocturnal beach sand beetle 
Chaerodes trachyscelides was this trend not con
firmed. For L. sulcicollis there is no reason to 
believe that there are not at least two spectral 
sensitivity peaks, one to ultraviolet and one to 
green light. 

Unfortunately, virtually nothing at all is 
known about the natural history of Lepispilus. 
Larvae have been found in logs of gum trees 
(Watt 1974) and according to J. F. Lawrence (in 
litt.) other specimens have turned up in litter, 
and adults have been collected in a flight-inter
cept trap in the Brindabella Range just outside 
Canberra (Australia), but at what time of day 
they are most active is unknown. Lepispilus be
longs to the tribe of Cyphaleini and, "at least 
some of its relatives are very brightly coloured" 
(J. F. Lawrence, in litt.), suggesting that our 
conclusion that the eye belongs to a diurnal 
species that secondarily occupies dark places 
is not too far off the mark. 
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